Telegram Group & Telegram Channel
🤖 Как бы вы объяснили обучение с подкреплением (reinforcement learning)?

Этот метод моделирует обучение методом проб и ошибок. Вместо обучающей выборки алгоритм взаимодействует с некоторой средой (environment), а в роли «разметки» выступают награда (reward) или штраф (penalty). Это некоторые скалярные величины, которая выдаются после каждого шага взаимодействия со средой. Они показывают, насколько хорошо алгоритм справляется с задачей. По традиции, субъект, который взаимодействует со средой, называется в reinforcement learning агентом (agent).

Цель обучения с подкреплением — найти оптимальную стратегию, которая максимизирует совокупное вознаграждение, получаемое агентом с течением времени.



tg-me.com/ds_interview_lib/104
Create:
Last Update:

🤖 Как бы вы объяснили обучение с подкреплением (reinforcement learning)?

Этот метод моделирует обучение методом проб и ошибок. Вместо обучающей выборки алгоритм взаимодействует с некоторой средой (environment), а в роли «разметки» выступают награда (reward) или штраф (penalty). Это некоторые скалярные величины, которая выдаются после каждого шага взаимодействия со средой. Они показывают, насколько хорошо алгоритм справляется с задачей. По традиции, субъект, который взаимодействует со средой, называется в reinforcement learning агентом (agent).

Цель обучения с подкреплением — найти оптимальную стратегию, которая максимизирует совокупное вознаграждение, получаемое агентом с течением времени.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/104

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

That growth environment will include rising inflation and interest rates. Those upward shifts naturally accompany healthy growth periods as the demand for resources, products and services rise. Importantly, the Federal Reserve has laid out the rationale for not interfering with that natural growth transition.It's not exactly a fad, but there is a widespread willingness to pay up for a growth story. Classic fundamental analysis takes a back seat. Even negative earnings are ignored. In fact, positive earnings seem to be a limiting measure, producing the question, "Is that all you've got?" The preference is a vision of untold riches when the exciting story plays out as expected.

Библиотека собеса по Data Science | вопросы с собеседований from us


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA